If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+3=43
We move all terms to the left:
4x^2+3-(43)=0
We add all the numbers together, and all the variables
4x^2-40=0
a = 4; b = 0; c = -40;
Δ = b2-4ac
Δ = 02-4·4·(-40)
Δ = 640
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{640}=\sqrt{64*10}=\sqrt{64}*\sqrt{10}=8\sqrt{10}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{10}}{2*4}=\frac{0-8\sqrt{10}}{8} =-\frac{8\sqrt{10}}{8} =-\sqrt{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{10}}{2*4}=\frac{0+8\sqrt{10}}{8} =\frac{8\sqrt{10}}{8} =\sqrt{10} $
| 6x+7/8=439/8 | | 2z-10=-18z | | 1215=16y | | 6.0.25=x | | 2.5x-2=21/2 | | t=3=-9 | | (2x+12)=42 | | 6x+4=4+8x-2x | | 9z-12=69 | | 3x+1=15-4x | | x^2+8=14-x | | 1,5x+1,5x+x=100 | | 14+23=14x-24 | | 1/2(x-4)=1/2(2x-6) | | -1x+3=2x+30 | | Y=75x2=1/2 | | 10*9=2y | | 2t+1=120 | | –4p+3=–13 | | –4x+2=x+18 | | x+11=5x-13 | | -3p-10=-9p-1+3 | | 10+6x=15+9x3x | | 2t+1=60 | | 8(x+3)=3x+124 | | 96=-8(x-) | | 8d-6=10d+10 | | 90+3x+15+2x+5=180 | | y*1.5=5 | | 2(5x+8)=42 | | 9x-4=6x+32 | | y-24.3=-15.8 |